The role of foxg1 in the development of neural stem cells of the olfactory epithelium.

نویسندگان

  • Shimako Kawauchi
  • Rosaysela Santos
  • Joon Kim
  • Piper L W Hollenbeck
  • Richard C Murray
  • Anne L Calof
چکیده

The olfactory epithelium (OE) of the mouse is an excellent model system for studying principles of neural stem cell biology because of its well-defined neuronal lineage and its ability to regenerate throughout life. To approach the molecular mechanisms of stem cell regulation in the OE, we have focused on Foxg1, also known as brain factor 1, which is a member of the Forkhead transcription factor family. Foxg1(-/-) mice show major defects in the OE at birth, suggesting that Foxg1 plays an important role in OE development. We find that Foxg1 is expressed in cells within the basal compartment of the OE, the location where OE stem and progenitor cells are known to reside. Since FoxG1 is known to regulate proliferation of neuronal progenitor cells during telencephalon development, we performed bromodeoxyuridine pulse-chase labeling of Sox2-expressing neural stem cells during primary OE neurogenesis. We found the percentage of Sox2-expressing cells that retained bromodeoxyuridine was twice as high in Foxg1(-/-) OE cells as in the wild type, suggesting that these cells are delayed and/or halted in their development in the absence of Foxg1. Our findings suggest that the proliferation and/or subsequent differentiation of Sox2-expressing neural stem cells in the OE is regulated by Foxg1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunohistological and electrophysiological characterization of Globose basal stem cells

Objective(s): In the past few decades, variety of foetal, embryonic and adult stem and progenitor cells have been tried with conflicting outcome for cell therapy of central nervous system injury and diseases. Cellular characteristics and functional plasticity of Globose basal stem cells (GBCs) residing in the olfactory epithelium of rat olfactory mucosa have not been studied in the past by the ...

متن کامل

Foxg1 is required for development of the vertebrate olfactory system.

Illuminating the molecular identity and regulation of early progenitor cells in the olfactory sensory epithelium represents an important challenge in the field of neural development. We show in both mouse and zebrafish that the winged helix transcription factor Foxg1 is expressed in an early progenitor population of the olfactory placode. In the mouse, Foxg1 is first expressed throughout the ol...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

Histochemical study of the olfactory rosette of Cyprinus carpio (Linnaeus, 1758)

  The distribution and localization of acid and neutral mucins in various cells lining the olfactory epithelium of Cyprinus carpio have been studied histochemically by employing the PAS-AB technique. Variations in the localization of protein in different cells lining the olfactory epithelium have been correlated with the functional significance of the region concerned. Intense localization of t...

متن کامل

O27: The Role of Hydrogels and Cell Based Therapies in Regeneration of Spinal Cord Injury

Spinal cord injury (SCI) is one of the devastating conditions leading to functional and neurological deficits following road traffic accidents. To date, there is no definite treatment for repairing damaged spinal cord tissue. In this regard, cell therapy opens a new window in front of scientists by using different cells such as mesenchymal stem cells, olfactory ensheathing cells, Schwann cells,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 1170  شماره 

صفحات  -

تاریخ انتشار 2009